SuperCell: A Wide-Area Coverage Solution Using High-Gain, High-Order Sectorized Antennas on Tall Towers

arXiv

Abstract

In this article we introduce a novel solution called SuperCell, which can improve the return on investment (ROI) for rural area network coverage. SuperCell offers two key technical features: it uses tall towers with high-gain antennas for wide coverage and high-order sectorization for high capacity. We show that a solution encompassing a high-elevation platform in excess of 200 meters increases coverage by 5x. Combined with dense frequency reuse by using as many as 36 azimuthal sectors from a single location, our solution can adequately serve the rural coverage and capacity demands. We validate this through propagation analysis, modeling, and experiments.

The article gives a design perspective using different classes of antennas: Luneburg lens, active/passive phased array, and spatial multiplexing solutions. For each class, the corresponding analytical model of the resulting signal-to-interference plus noise ratio (SINR) based range and capacity prediction is presented. The spatial multiplexing solution is also validated through field measurements and additional 3D ray-tracing simulation.

Finally, in this article we also shed light on two recent SuperCell field trials performed using a Luneburg lens antenna system. The trials took place in rural New Mexico and Mississippi. In the trials, we quantified the coverage and capacity of SuperCell in barren land and in a densely forested location, respectively. In the article, we demonstrate the results obtained in the trials and share the lessons learned regarding green-field and brown-field deployments.

Featured Publications