Winkle: Foiling Long-Range Attacks in Proof-of-Stake Systems

ACM Conference on Advances in Financial Technologies (AFT)

Abstract

Winkle protects any validator-based byzantine fault tolerant consensus mechanisms, such as those used in modern Proof-of-Stake blockchains, against long-range attacks where old validators’ signature keys get compromised. Winkle is a decentralized secondary layer of client-based validation, where a client includes a single additional field into a transaction that they sign: a hash of the previously sequenced block. The block that gets a threshold of signatures (confirmations) weighted by clients’ coins is called a “confirmed” checkpoint. We show that under plausible and flexible security assumptions about clients the confirmed checkpoints can not be equivocated. We discuss how client key rotation increases security, how to accommodate for coins’ minting and how delegation allows for faster checkpoints. We evaluate checkpoint latency experimentally using Bitcoin and Ethereum transaction graphs, with and without delegation of stake.

Latest Publications

A Practical Stereo Depth System for Smart Glasses

Jialiang Wang, Daniel Scharstein, Akash Bapat, Kevin Blackburn-Matzen Matthew Yu, Jonathan Lehman, Suhib Alsisan, Yanghan Wang, Sam Tsai, Jan-Michael Frahm, Zijian He, Peter Vajda, Michael Cohen, Matt Uyttendaele

CVPR - 2023

Presto: A Decade of SQL Analytics at Meta

Yutian James Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi, Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak Majeti, Aditi Pandit, Biswapesh Chattopadhyay

SIGMOD - 2023