Simulation and Retargeting of Complex Multi-Character Interactions
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
International Conference on Machine Learning (ICML)
We propose a direct-to-word sequence model which uses a word network to learn word embeddings from letters. The word network can be integrated seamlessly with arbitrary sequence models including Connectionist Temporal Classification and encoder-decoder models with attention. We show our direct-to-word model can achieve word error rate gains over sub-word level models for speech recognition. We also show that our direct-to-word approach retains the ability to predict words not seen at training time without any retraining. Finally, we demonstrate that a word-level model can use a larger stride than a sub-word level model while maintaining accuracy. This makes the model more efficient both for training and inference.
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré