Simulation and Retargeting of Complex Multi-Character Interactions
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
ICML Workshop on Uncertainty and Robustness in Deep Learning
Characterizing the confidence of machine learning predictions unlocks models that know when they do not know. In this study, we propose a framework for assessing the quality of predictive distributions obtained using deep learning models. The framework enables representation of aleatory and epistemic uncertainty, and relies on simulated data to generate different sources of uncertainty. Finally, it enables quantitative evaluation of the performance of uncertainty estimation techniques. We demonstrate the proposed framework with a case study highlighting the insights one can gain from using this framework.
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré