A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Interspeech
Algorithms for speech bandwidth extension (BWE) may work in either the time domain or the frequency domain. Time-domain methods often do not sufficiently recover the high-frequency content of speech signals; frequency-domain methods are better at recovering the spectral envelope, but have difficulty reconstructing the details of the waveform. In this paper, we propose a two-stage approach for BWE, which enjoys the advantages of both time- and frequency-domain methods. The first stage is a frequency-domain neural network, which predicts the high-frequency part of the wide-band spectrogram from the narrow-band input spectrogram. The wide-band spectrogram is then converted into a time-domain waveform, and passed through the second stage to refine the temporal details. For the first stage, we compare a convolutional recurrent network (CRN) with a temporal convolutional network (TCN), and find that the latter is able to capture long-span dependencies equally well as the former while using a lot fewer parameters. For the second stage, we enhance the Wave-U-Net architecture with a multi-resolution short-time Fourier transform (MSTFT) loss function. A series of comprehensive experiments show that the proposed system achieves superior performance in speech enhancement (measured by both time-and frequency-domain metrics) as well as speech recognition.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré