A Universal Music Translation Network

International Conference on Learning Representations (ICLR)

Abstract

We present a method for translating music across musical instruments and styles. This method is based on unsupervised training of a multi-domain wavenet autoencoder, with a shared encoder and a domain-independent latent space that is trained end-to-end on waveforms. Employing a diverse training dataset and large net capacity, the single encoder allows us to translate also from musical domains that were not seen during training. We evaluate our method on a dataset collected from professional musicians, and achieve convincing translations. We also study the properties of the obtained translation and demonstrate translating even from a whistle, potentially enabling the creation of instrumental music by untrained humans.

Latest Publications

Log-structured Protocols in Delos

Mahesh Balakrishnan, Mihir Dharamshi, David Geraghty, Santosh Ghosh, Filip Gruszczynski, Jun Li, Jingming Liu, Suyog Mapara, Rajeev Nagar, Ivailo Nedelchev, Francois Richard, Chen Shen, Yee Jiun Song, Rounak Tibrewal, Vidhya Venkat, Ahmed Yossef, Ali Zaveri

SOSP