Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization

Conference on Neural Information Processing Systems (NeurIPS)

Abstract

Adversarial Imitation Learning alternates between learning a discriminator – which tells apart expert’s demonstrations from generated ones – and a generator’s policy to produce trajectories that can fool this discriminator. This alternated optimization is known to be delicate in practice since it compounds unstable adversarial training with brittle and sample-inefficient reinforcement learning. We propose to remove the burden of the policy optimization steps by leveraging a novel discriminator formulation. Specifically, our discriminator is explicitly conditioned on two policies: the one from the previous generator’s iteration and a learnable policy. When optimized, this discriminator directly learns the optimal generator’s policy. Consequently, our discriminator’s update solves the generator’s optimization problem for free: learning a policy that imitates the expert does not require an additional optimization loop. This formulation effectively cuts by half the implementation and computational burden of Adversarial Imitation Learning algorithms by removing the Reinforcement Learning phase altogether. We show on a variety of tasks that our simpler approach is competitive to prevalent Imitation Learning methods.

Latest Publications

Boosted Dense Retriever

Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel

NAACL - 2022