A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
As one of the major sources in speech variability, accents have posed a grand challenge to the robustness of speech recognition systems. In this paper, our goal is to build a unified end-to-end speech recognition system that generalizes well across accents. For this purpose, we propose a novel pre-training framework AIPNet based on generative adversarial nets (GAN) for accent-invariant representation learning: Accent Invariant Pre-training Networks. We pre-train AIPNet to disentangle accent-invariant and accent-specific characteristics from acoustic features through adversarial training on accented data for which transcriptions are not necessarily available. We further fine-tune AIPNet by connecting the accent-invariant module with an attention-based encoder-decoder model for multiaccent speech recognition. In the experiments, our approach is compared against four baselines including both accent-dependent and accent-independent models. Experimental results on 9 English accents show that the proposed approach outperforms all the baselines by 2.3 ∼ 4.5% relative reduction on average WER when transcriptions are available in all accents and by 1.6 ∼ 6.1% relative reduction when transcriptions are only available in US accent.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré
Zach Miller, Olusiji Medaiyese, Madhavan Ravi, Alex Beatty, Fred Lin