A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Outlier Detection De-constructed (ODD) Workshop
Validating and testing a machine learning model is a critical stage in model development. For time-series anomaly detection, validation and testing is challenging because of the lack of labeled data and the difficulty of generating a realistic time-series with anomalies. Motivated by the continued success of Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GANs) to produce realistic-looking data we provide a platform to generate a realistic time-series with anomalies called AnoGen. Our contribution includes a sampling technique that allows us to sample from the latent z space of a trained variational auto-encoder to deterministically generate a realistic time-series with anomalies.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré