A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Shared Visual Representations in Human and Machine Intelligence (SVRHM) Workshop at NeurIPS
When convolutional layers apply no padding, central pixels have more ways to contribute to the convolution than peripheral pixels. Such discrepancy grows exponentially with the number of layers, leading to implicit foveation of the input pixels. We show that this discrepancy can persist even when padding is applied. In particular, with the commonly-used zero-padding, foveation effects are significantly reduced but not eliminated. We explore how different aspects of convolution arithmetic impact the extent and magnitude of these effects, and elaborate on which alternative padding techniques can mitigate it. Finally, we compare our findings with foveation in human vision, suggesting that both effects possibly have similar nature and implications.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré