Simulation and Retargeting of Complex Multi-Character Interactions
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Neural Information Processing Systems (NeurIPS)
Convolutional neural networks process input data by sending channel-wise feature response maps to subsequent layers. While a lot of progress has been made by making networks deeper, information from each channel can only be propagated from lower levels to higher levels in a hierarchical feed-forward manner. When viewing each filter in the convolutional layer as a neuron, those neurons are not communicating explicitly within each layer in CNNs. We introduce a novel network unit called Cross-channel Communication (C3) block, a simple yet effective module to encourage the neuron communication within the same layer. The C3 block enables neurons to exchange information through a micro neural network, which consists of a feature encoder, a message communicator, and a feature decoder, before sending the information to the next layer. With C3 block, each neuron accounts for the channel-wise responses from other neurons at the same layer and learns more discriminative and complementary representations. Extensive experiments for multiple computer vision tasks show that our proposed mechanism allows shallower networks to aggregate useful information within each layer, and performances outperform baseline deep networks and other competitive methods.
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré