A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
International Conference on Machine Learning (ICML)
Counterfactual Regret Minimization (CFR) is the leading framework for solving large imperfect-information games. It converges to an equilibrium by iteratively traversing the game tree. In order to deal with extremely large games, abstraction is typically applied before running CFR. The abstracted game is solved with tabular CFR, and its solution is mapped back to the full game. This process can be problematic because aspects of abstraction are often manual and domain specific, abstraction algorithms may miss important strategic nuances of the game, and there is a chicken-and-egg problem because determining a good abstraction requires knowledge of the equilibrium of the game. This paper introduces Deep Counterfactual Regret Minimization, a form of CFR that obviates the need for abstraction by instead using deep neural networks to approximate the behavior of CFR in the full game. We show that Deep CFR is principled and achieves strong performance in large poker games. This is the first non-tabular variant of CFR to be successful in large games.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré