Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
SIGGRAPH ASIA
Holographic optical elements (HOEs) have a wide range of applications, including their emerging use in virtual and augmented reality displays, but their design and fabrication have remained largely limited to configurations using simple wavefronts. In this paper, we present a pipeline for the design, optimization, and fabrication of complex, customized HOEs that enhances their imaging performance and enables new applications. In particular, we propose an optimization method for grating vector fields that accounts for the unique selectivity properties of HOEs. We further show how our pipeline can be applied to two distinct HOE fabrication methods. The first uses a pair of freeform refractive elements to manufacture HOEs with high optical quality and precision. The second uses a holographic printer with two wavefront-modulating arms, enabling rapid prototyping. We propose a unified wavefront decomposition framework suitable for both fabrication approaches. To demonstrate the versatility of these methods, we fabricate and characterize a series of specialized HOEs, including an aspheric lens, a head-up display lens, a lens array, and, for the first time, a full-color caustic projection element.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann