A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Conference on Information and Knowledge Management (CIKM)
Dense subgraph detection is a fundamental building block for a variety of applications. Most of the existing methods aim to discover dense subgraphs within either a single network or a multi-view network while ignoring the informative node dependencies across multiple layers of networks in a complex system. To date, it largely remains a daunting task to detect dense subgraphs on multi-layered networks. In this paper, we formulate the problem of dense subgraph detection on multi-layered networks based on cross-layer consistency principle. We further propose a novel algorithm DESTINE based on projected gradient descent with the following advantages. First, armed with the cross-layer dependencies, DESTINE is able to detect significantly more accurate and meaningful dense subgraphs at each layer. Second, it scales linearly w.r.t. the number of links in the multi-layered network. Extensive experiments demonstrate the efficacy of the proposed DESTINE algorithm in various cases.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré