Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Offline Reinforcement Learning Workshop at NeurIPS
Thompson sampling (TS) has emerged as a robust technique for contextual bandit problems. However, TS requires posterior inference and optimization for action generation, prohibiting its use in many internet applications where latency and ease of deployment are of concern. We propose a novel imitation-learning-based algorithm that distills a TS policy into an explicit policy representation by performing posterior inference and optimization offline. The explicit policy representation enables fast online decision-making and easy deployment in mobile and server-based environments. Our algorithm iteratively performs offline batch updates to the TS policy and learns a new imitation policy. Since we update the TS policy with observations collected under the imitation policy, our algorithm emulates an off-policy version of TS. Our imitation algorithm guarantees Bayes regret comparable to TS, up to the sum of single-step imitation errors. We show these imitation errors can be made arbitrarily small when unlabeled contexts are cheaply available, which is the case for most large-scale internet applications. Empirically, we show that our imitation policy achieves comparable regret to TS, while reducing decision-time latency by over an order of magnitude.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel