Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Empirical Methods in Natural Language Processing (EMNLP)
The use of connectionist approaches in conversational agents has been progressing rapidly due to the availability of large corpora. However current generative dialogue models often lack coherence and are content poor. This work proposes an architecture to incorporate unstructured knowledge sources to enhance the next utterance prediction in chit-chat type of generative dialogue models. We focus on Sequence-to-Sequence (Seq2Seq) conversational agents trained with the Reddit News dataset, and consider incorporating external knowledge from Wikipedia summaries as well as from the NELL knowledge base. Our experiments show faster training time and improved perplexity when leveraging external knowledge.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan Ozturk, Kevin Lewi, Sean Lawlor