FAUSTA: Scaling Dynamic Analysis with Traffic Generation at WhatsApp

IEEE International Conference on Software Testing, Verification and Validation (ICST)


We introduce FAUSTA, an algorithmic traffic generation platform that enables analysis and testing at scale. FAUSTA has been deployed at Meta to analyze and test the WhatsApp platform infrastructure since September 2020, enabling WhatsApp developers to deploy reliable code changes to a code base of millions of lines of code, supporting over 2 billion users who rely on WhatsApp for their daily communications. FAUSTA covers expected and unexpected program behaviors in a privacy-safe controlled environment to support multiple use cases such as reliability testing, privacy analysis and performance regression detection. It currently supports three different algorithmic input generation strategies, each of which construct realistic backend server traffic that closely simulates production data, without replaying any real user data. FAUSTA has been deployed and closely integrated into the WhatsApp continuous integration process, catching bugs in development before they hit production. We report on the development and deployment of FAUSTA’s reliability use case between September 2020 and August 2021. During this period it has found 1,876 unique reliability issues, with a fix rate of 74%, indicating a high degree of true positive fault revelation. We also report on the distribution of fault types revealed by FAUSTA, and the correlation between coverage and faults found. Overall, we do find evidence that higher coverage is correlated with fault revelation.

Best Industry Paper Award at ICST 2022

Latest Publications

A Practical Stereo Depth System for Smart Glasses

Jialiang Wang, Daniel Scharstein, Akash Bapat, Kevin Blackburn-Matzen Matthew Yu, Jonathan Lehman, Suhib Alsisan, Yanghan Wang, Sam Tsai, Jan-Michael Frahm, Zijian He, Peter Vajda, Michael Cohen, Matt Uyttendaele

CVPR - 2023

Presto: A Decade of SQL Analytics at Meta

Yutian James Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas Xirogiannopoulos, Bin Fan, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi, Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Deepak Majeti, Aditi Pandit, Biswapesh Chattopadhyay

SIGMOD - 2023