A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
arXiv
In this paper, we provide a deep dive into the deployment of inference accelerators at Facebook. Many of our ML workloads have unique characteristics, such as sparse memory accesses, large model sizes, as well as high compute, memory and network bandwidth requirements. We co-designed a high-performance, energy-efficient inference accelerator platform based on these requirements. We describe the inference accelerator platform ecosystem we developed and deployed at Facebook: both hardware, through Open Compute Platform (OCP), and software framework and tooling, through Pytorch/Caffe2/Glow. A characteristic of this ecosystem from the start is its openness to enable a variety of AI accelerators from different vendors. This platform, with six low-power accelerator cards alongside a single-socket host CPU, allows us to serve models of high complexity that cannot be easily or efficiently run on CPUs. We describe various performance optimizations, at both platform and accelerator level, which enables this platform to serve production traffic at Facebook. We also share deployment challenges, lessons learned during performance optimization, as well
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré