A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
ACM Conference on Human Factors in Computing Systems (CHI)
Although users generate a large volume of text on Facebook every day, we know little about the topics they choose to talk about, and how their network responds. Using Latent Dirichlet Allocation (LDA), we identify topics from more than half a million Facebook status updates and determine which topics are more likely to receive audience feedback, such as likes and comments.
Furthermore, as previous research suggests that men and women use language for different purposes, we examine gender differences in topics, finding that women tend to share more personal issues (e.g., family matters) and men discuss more general public events (e.g., politics and sports). Post topic predicts how many people will respond to it, and gender moderates the relationship between topic and audience responsiveness.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré