A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
The Web Conference
Query categorization at customer-to-customer e-commerce platforms like Facebook Marketplace is challenging due to the vagueness of search intent, noise in real-world data, and imbalanced training data across languages. Its deployment also needs to consider challenges in scalability and downstream integration in order to translate modeling advances into better search result relevance. In this paper we present HierCat, the query categorization system at Facebook Marketplace. HierCat addresses these challenges by leveraging multi-task pre-training of dual-encoder architectures with a hierarchical inference step to effectively learn from weakly supervised training data mined from searcher engagement. We show that HierCat not only outperforms popular methods in offline experiments, but also leads to 1.4% improvement in NDCG and 4.3% increase in searcher engagement at Facebook Marketplace Search in two weeks of online A/B testing.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré