A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
European Conference on Computer Vision (ECCV)
We introduce Housekeep, a benchmark to evaluate commonsense reasoning in the home for embodied AI. In Housekeep, an embodied agent must tidy a house by rearranging misplaced objects without explicit instructions specifying which objects need to be rearranged. Instead, the agent must learn from and is evaluated against human preferences of which objects belong where in a tidy house. Specifically, we collect a dataset of where humans typically place objects in tidy and untidy houses constituting 1799 objects, 268 object categories, 585 placements, and 105 rooms. Next, we propose a modular baseline approach for Housekeep that integrates planning, exploration, and navigation. It leverages a fine-tuned large language model (LLM) trained on an internet text corpus for effective planning. We find that our baseline planner generalizes to some extent when rearranging objects in unknown environments. See our webpage for code, data and more details: https://yashkant.github.io/housekeep/.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré