Improved Arabic Dialect Classification with Social Media Data

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

Abstract

Arabic dialect classification has been an important and challenging problem for Arabic language processing, especially for social media text analysis and machine translation. In this paper we propose an approach to improving Arabic dialect classification with semi-supervised learning: multiple classifiers are trained with weakly supervised, strongly supervised, and unsupervised data. Their combination yields significant and consistent improvement on two different test sets. The dialect classification accuracy is improved by 5% over the strongly supervised classifier and 20% over the weakly supervised classifier. Furthermore, when applying the improved dialect classifier to build a Modern Standard Arabic (MSA) language model (LM), the new model size is reduced by 70% while the English-Arabic translation quality is improved by 0.6 BLEU point.

Featured Publications