iSDF: Real-Time Neural Signed Distance Fields for Robot Perception

The Robotics: Science and Systems (RSS)

Abstract

We present iSDF, a continual learning system for real-time signed distance field (SDF) reconstruction. Given a stream of posed depth images from a moving camera, it trains a randomly initialized neural network to map input 3D coordinate to approximate signed distance. The model is self-supervised by minimizing a loss that bounds the predicted signed distance using the distance to the closest sampled point in a batch of query points that are actively sampled. In contrast to prior work based on voxel grids, our neural method is able to provide adaptive levels of detail with plausible filling in of partially observed regions and denoising of observations, all while having a more compact representation. In evaluations against alternative methods on real and synthetic datasets of indoor environments, we find that iSDF produces more accurate reconstructions, and better approximations of collision costs and gradients useful for downstream planners in domains from navigation to manipulation. Code and video results can be found at our project page: https://joeaortiz.github.io/iSDF/.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022

Looper: an end-to-end ML platform for product decisions

Igor L. Markov, Hanson Wang, Nitya Kasturi, Shaun Singh, Mia Garrard, Yin Huang, Sze Wai Yuen, Sarah Tran, Zehui Wang, Igor Glotov, Tanvi Gupta, Peng Chen, Boshuang Huang, Xiaowen Xie, Michael Belkin, Sal Uryasev, Sam Howie, Eytan Bakshy, Norm Zhou

KDD - 2022