Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry

International Conference on Machine Learning (ICML)

Abstract

We are concerned with the discovery of hierarchical relationships from large-scale unstructured similarity scores. For this purpose, we study different models of hyperbolic space and find that learning embeddings in the Lorentz model is substantially more efficient than in the Poincaré-ball model. We show that the proposed approach allows us to learn high-quality embeddings of large taxonomies which can yield significant improvements over Poincaré embeddings, especially in low dimensions. Lastly, we apply our model to discover hierarchies in two real-world datasets: we show that an embedding in hyperbolic space can reveal important aspects of a company’s organizational structure as well as historical relationships between language families.

Latest Publications

Boosted Dense Retriever

Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel

NAACL - 2022