A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
European Conference on Computer Vision
Convolutional networks trained on large supervised datasets produce visual features which form the basis for the state-of-the-art in many computer-vision problems. Further improvements of these visual features will likely require even larger manually labeled data sets, which severely limits the pace at which progress can be made. In this paper, we explore the potential of leveraging massive, weakly-labeled image collections for learning good visual features. We train convolutional networks on a dataset of 100 million Flickr photos and comments, and show that these networks produce features that perform well in a range of vision problems. We also show that the networks appropriately capture word similarity and learn correspondences between different languages.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré