Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
International Conference on Machine Learning (ICML)
We introduce a new measure to evaluate the transferability of representations learned by classifiers. Our measure, the Log Expected Empirical Prediction (LEEP), is simple and easy to compute: when given a classifier trained on a source data set, it only requires running the target data set through this classifier once. We analyze the properties of LEEP theoretically and demonstrate its effectiveness empirically. Our analysis shows that LEEP can predict the performance and convergence speed of both transfer and meta-transfer learning methods, even for small or imbalanced data. Moreover, LEEP outperforms recently proposed transferability measures such as negative conditional entropy and H scores. Notably, when transferring from ImageNet to CIFAR100, LEEP can achieve up to 30% improvement compared to the best competing method in terms of the correlations with actual transfer accuracy.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal Gupta, Yashar Mehdad