Leveraging the Present to Anticipate the Future in Videos

CVPR Precognition Workshop

Abstract

Anticipating actions before they are executed is crucial for a wide range of practical applications including autonomous driving and robotics. While most prior work in this area requires partial observation of executed actions, in the paper we focus on anticipating actions seconds before they start. Our proposed approach is the fusion of a purely anticipatory model with a complementary model constrained to reason about the present. In particular, the latter predicts present action and scene attributes, and reasons about how they evolve over time. By doing so, we aim at modeling action anticipation at a more conceptual level than directly predicting future actions. Our model outperforms previously reported methods on the EPIC-KITCHENS and Breakfast datasets.

Latest Publications

Log-structured Protocols in Delos

Mahesh Balakrishnan, Mihir Dharamshi, David Geraghty, Santosh Ghosh, Filip Gruszczynski, Jun Li, Jingming Liu, Suyog Mapara, Rajeev Nagar, Ivailo Nedelchev, Francois Richard, Chen Shen, Yee Jiun Song, Rounak Tibrewal, Vidhya Venkat, Ahmed Yossef, Ali Zaveri

SOSP