Simulation and Retargeting of Complex Multi-Character Interactions
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Conference on Computer Vision and Pattern Recognition (CVPR)
In the face of the video data deluge, today’s expensive clip-level classifiers are increasingly impractical. We propose a framework for efficient action recognition in untrimmed video that uses audio as a preview mechanism to eliminate both short-term and long-term visual redundancies. First, we devise an IMGAUD2VID framework that hallucinates clip-level features by distilling from lighter modalities—a single frame and its accompanying audio — reducing short-term temporal redundancy for efficient clip-level recognition. Second, building on IMGAUD2VID, we further propose IMGAUD-SKIMMING, an attention-based long short-term memory network that iteratively selects useful moments in untrimmed videos, reducing long-term temporal redundancy for efficient video-level recognition. Extensive experiments on four action recognition datasets demonstrate that our method achieves the state-of-the-art in terms of both recognition accuracy and speed.
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré