Low-shot Visual Recognition by Shrinking and Hallucinating Features

International Conference on Computer Vision (ICCV)


Low-shot visual learning—the ability to recognize novel object categories from very few examples—is a hallmark of human visual intelligence. Existing machine learning approaches fail to generalize in the same way. To make progress on this foundational problem, we present a lowshot learning benchmark on complex images that mimics challenges faced by recognition systems in the wild. We then propose (1) representation regularization techniques, and (2) techniques to hallucinate additional training examples for data-starved classes. Together, our methods improve the effectiveness of convolutional networks in low-shot learning, improving the one-shot accuracy on novel classes by 2.3× on the challenging ImageNet dataset.

Latest Publications

Boosted Dense Retriever

Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel

NAACL - 2022