MEgATrack: Monochrome Egocentric Articulated Hand-Tracking for Virtual Reality

SIGGRAPH

Abstract

We present a system for real-time hand-tracking to drive virtual and augmented reality (VR/AR) experiences. Using four fisheye monochrome cameras, our system generates accurate and low-jitter 3D hand motion across a large working volume for a diverse set of users. We achieve this by proposing neural network architectures for detecting hands and estimating hand keypoint locations. Our hand detection network robustly handles a variety of real world environments. The keypoint estimation network leverages tracking history to produce spatially and temporally consistent poses. We design scalable, semi-automated mechanisms to collect a large and diverse set of ground truth data using a combination of manual annotation and automated tracking. Additionally, we introduce a detection-by-tracking method that increases smoothness while reducing the computational cost; the optimized system runs at 60Hz on PC and 30Hz on a mobile processor. Together, these contributions yield a practical system for capturing a user’s hands and is the default feature on the Oculus Quest VR headset powering input and social presence.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022