A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
IEEE International Symposium on Information Theory (ISIT)
Embedding representations power machine intelligence in many applications, including recommendation systems, but they are space intensive — potentially occupying hundreds of gigabytes in large-scale settings. To help manage this outsized memory consumption, we explore mixed dimension embeddings, an embedding layer architecture in which a particular embedding vector’s dimension scales with its query frequency. Through theoretical analysis and systematic experiments, we demonstrate that using mixed dimensions can drastically reduce the memory usage, while maintaining and even improving the ML performance. Empirically, we show that the proposed mixed dimension layers improve accuracy by 0.1% using half as many parameters or maintain it using 16× fewer parameters for click-through rate prediction on the Criteo Kaggle dataset. They also train over 2× faster on a GPU.
A full version of this paper is accessible here.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré
Zach Miller, Olusiji Medaiyese, Madhavan Ravi, Alex Beatty, Fred Lin