Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
IEEE Transactions on Haptics
Wearable haptic systems offer portable, private tactile communication to a human user. To date, advances in wearable haptic devices have typically focused on the optimization of haptic cue transmission using a single modality, or have combined two types of cutaneous feedback, each mapped to a particular parameter of the task. Alternatively, researchers have employed arrays of haptic tactile actuators to maximize information throughput to a user. However, when large cue sets are to be transmitted, such as those required to communicate language, perceptual interference between transmitted cues can decrease the efficacy of single sensory systems, or require large footprints to ensure salient spatiotemporal cues are rendered to the user. In this paper, we present a wearable, multi-sensory haptic feedback system, MISSIVE (Multi-sensory Interface of Stretch, Squeeze, and Integrated Vibration Elements), that conveys multi-sensory haptic cues to the user’s upper arm. We present experimental results that demonstrate that rendering haptic cues with multi-sensory components—specifically, lateral skin stretch, radial squeeze, and vibrotactile stimuli—improved perceptual distinguishability in comparison to similar cues with all-vibrotactile components. These results support the incorporation of diverse stimuli, both vibrotactile and non-vibrotactile, for applications requiring large haptic cue sets.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann