Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Conference on Robot Learning (CoRL)
We present a modular approach for learning policies for navigation over long planning horizons from language input. Our hierarchical policy operates at multiple timescales, where the higher-level master policy proposes subgoals to be executed by specialized sub-policies. Our choice of subgoals is compositional and semantic, i.e. they can be sequentially combined in arbitrary orderings, and assume human-interpretable descriptions (e.g. ‘exit room’, ‘find kitchen’, ‘find refrigerator’, etc.). We use imitation learning to warm-start policies at each level of the hierarchy, dramatically increasing sample efficiency, followed by reinforcement learning. Independent reinforcement learning at each level of hierarchy enables sub-policies to adapt to consequences of their actions and recover from errors. Subsequent joint hierarchical training enables the master policy to adapt to the sub-policies.
On the challenging EQA [1] benchmark in House3D [2], requiring navigating diverse realistic indoor environments, our approach outperforms prior work by a significant margin, both in terms of navigation and question answering.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann