Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Centroid based clustering methods such as k-means, k-medoids and k-centers are heavily applied as a go-to tool in exploratory data analysis. In many cases, those methods are used to obtain representative centroids of the data manifold for visualization or summarization of a dataset. Real world datasets often contain inherent abnormalities, e.g., repeated samples and sampling bias, that manifest imbalanced clustering. We propose to remedy such scenario by introducing a maximal radius constraint r on the clusters formed by the centroids, i.e., samples from a same cluster should not be more than 2r apart in terms of ℓ2 distance. We achieve this constraint by solving a semi-definite program, followed by a linear assignment problem with quadratic constraints. Through qualitative results, we show that our proposed method is robust towards dataset imbalances and sampling artifacts. To the best of our knowledge, ours is the first constrained k-means clustering method with hard radius constraints.
Code at: https://github.com/AhmedImtiazPrio/radius-constrained-kmeans.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel