Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
ICCV Workshop on Interpreting and Explaining Visual AI Models
Deep networks for visual recognition are known to leverage “easy to recognise” portions of objects such as faces and distinctive texture patterns. The lack of a holistic understanding of objects may increase fragility and overfitting. In recent years, several papers have proposed to address this issue by means of occlusions as a form of data augmentation. However, successes have been limited to tasks such as weak localization and model interpretation, but no benefit was demonstrated on image classification on large-scale datasets. In this paper, we show that, by using a simple technique based on batch augmentation, occlusions as data augmentation can result in better performance on ImageNet for high-capacity models (e.g., ResNet50). We also show that varying amounts of occlusions used during training can be used to study the robustness of different neural network architectures.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal Gupta, Yashar Mehdad