A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
VLDB 2014
We focus on crowd-powered filtering, i.e., filtering a large set of items using humans. Filtering is one of the most commonly used building blocks in crowdsourcing applications and systems. While solutions for crowd-powered filtering exist, they make a range of implicit assumptions and restrictions, ultimately rendering them not powerful enough for real-world applications. We describe two approaches to discard these implicit assumptions and restrictions: one, that carefully generalizes prior work, leading to an optimal, but often-times intractable solution, and another, that provides a novel way of reasoning about filtering strategies, leading to a sometimes sub-optimal, but efficiently computable solution (that is asymptotically close to optimal). We demonstrate that our techniques lead to significant reductions in error of up to 30% for fixed cost over prior work in a novel crowdsourcing application: peer evaluation in on-line courses.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré