Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
VLDB 2014
We focus on crowd-powered filtering, i.e., filtering a large set of items using humans. Filtering is one of the most commonly used building blocks in crowdsourcing applications and systems. While solutions for crowd-powered filtering exist, they make a range of implicit assumptions and restrictions, ultimately rendering them not powerful enough for real-world applications. We describe two approaches to discard these implicit assumptions and restrictions: one, that carefully generalizes prior work, leading to an optimal, but often-times intractable solution, and another, that provides a novel way of reasoning about filtering strategies, leading to a sometimes sub-optimal, but efficiently computable solution (that is asymptotically close to optimal). We demonstrate that our techniques lead to significant reductions in error of up to 30% for fixed cost over prior work in a novel crowdsourcing application: peer evaluation in on-line courses.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel