Optimizing Generalized Gini Indices for Fairness in Rankings

International Conference on Research and Development in Information Retrieval (ACM SIGIR)

Abstract

There is growing interest in designing recommender systems that aim at being fair towards item producers or their least satisfied users. Inspired by the domain of inequality measurement in economics, this paper explores the use of generalized Gini welfare functions (GGFs) as a means to specify the normative criterion that recommender systems should optimize for. GGFs weight individuals depending on their ranks in the population, giving more weight to worse-off individuals to promote equality. Depending on these weights, GGFs minimize the Gini index of item exposure to promote equality between items, or focus on the performance on specific quantiles of least satisfied users. GGFs for ranking are challenging to optimize because they are non-differentiable. We resolve this challenge by leveraging tools from non-smooth optimization and projection operators used in differentiable sorting. We present experiments using real datasets with up to 15k users and items, which show that our approach obtains better trade-offs than the baselines on a variety of recommendation tasks and fairness criteria.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022

Looper: an end-to-end ML platform for product decisions

Igor L. Markov, Hanson Wang, Nitya Kasturi, Shaun Singh, Mia Garrard, Yin Huang, Sze Wai Yuen, Sarah Tran, Zehui Wang, Igor Glotov, Tanvi Gupta, Peng Chen, Boshuang Huang, Xiaowen Xie, Michael Belkin, Sal Uryasev, Sam Howie, Eytan Bakshy, Norm Zhou

KDD - 2022