Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Advanced Materials
Next-generation material applications require electroactive materials for actuation which are light weight, operate at low voltages (<5 V), exhibit cyclability, and are compatible with a range of environments. Here, a class of network polymerized ionic liquid (n-PIL) actuators is reported, synthesized via a facile step growth polymerization, which not only have comparable actuation strains (≈0.9%) to other state-of-the-art ionic polymer systems at ±3 V, but also exhibit 85% performance preservation after 1000 testing cycles and operate with no additives such as solvent or free ionic liquid. Molecular engineering of the n-PILs by controlling crosslinking density and linker polarity leads to an order-of-magnitude increase in tip displacement which provides insights on future materials development.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel