A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Conference on Machine Learning and Systems (MLSys)
In both mobile and web applications, speeding up user interface response times can often lead to significant improvements in user engagement. A common technique to improve responsiveness is to precompute data ahead of time for specific activities. However, simply precomputing data for all user and activity combinations is prohibitive at scale due to both network constraints and server-side computational costs. It is therefore important to accurately predict per-user application usage in order to minimize wasted precomputation (“predictive precompute”). In this paper, we describe the novel application of recurrent neural networks (RNNs) for predictive precompute. We compare their performance with traditional machine learning models, and share findings from their large-scale production use at Facebook. We demonstrate that RNN models improve prediction accuracy, eliminate most feature engineering steps, and reduce the computational cost of serving predictions by an order of magnitude.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré