QuickEdit: Editing Text & Translations by Crossing Words Out

Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)

Abstract

We propose a framework for computer-assisted text editing. It applies to translation post-editing and to paraphrasing. Our proposal relies on very simple interactions: a human editor modifies a sentence by marking tokens they would like the system to change. Our model then generates a new sentence which reformulates the initial sentence by avoiding marked words. The approach builds upon neural sequence-to-sequence modeling and introduces a neural network which takes as input a sentence along with change markers. Our model is trained on translation bitext by simulating post-edits. We demonstrate the advantage of our approach for translation post-editing through simulated post-edits. We also evaluate our model for paraphrasing through a user study.

Latest Publications

Sustainable AI: Environmental Implications, Challenges and Opportunities

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-Hsin S. Lee, Bugra Akyildiz, Max Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, Kim Hazelwood

MLSys - 2022