Recurrent Orthogonal Networks and Long-Memory Tasks

International Conference on Machine Learning

Abstract

Although RNNs have been shown to be powerful tools for processing sequential data, finding architectures or optimization strategies that allow them to model very long term dependencies is still an active area of research. In this work, we carefully analyze two synthetic datasets originally outlined in (Hochreiter and Schmidhuber, 1997) which are used to evaluate the ability of RNNs to store information over many time steps. We explicitly construct RNN solutions to these problems, and using these constructions, illuminate both the problems themselves and the way in which RNNs store different types of information in their hidden states. These constructions furthermore explain the success of recent methods that specify unitary initializations or constraints on the transition matrices.

Latest Publications

Log-structured Protocols in Delos

Mahesh Balakrishnan, Mahesh Balakrishnan, Mihir Dharamshi, Jason Flinn, David Geraghty, Santosh Ghosh, Filip Gruszczynski, Ahmed Jafri, Jun Li, Jingming Liu, Suyog Mapara, Rajeev Nagar, Ivailo Nedelchev, Francois Richard, Chen Shen, Yee Jiun Song, Rounak Tibrewal, Vidhya Venkat, Ahmed Yossef, Ali Zaveri

SOSP