Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Annual Review of Linguistics (Journal)
Language use in everyday life can be studied using lightweight, wearable recorders that collect long-form recordings - that is, audio (including speech) over whole days. The hardware and software underlying this technique is increasingly accessible and inexpensive, and these data are revolutionizing the language acquisition field. We first place this technique into the broader context of the current ways of studying both the input being received by children and children’s own language production, laying out the main advantages and drawbacks of long-form recordings. We then go on to argue that a unique advantage of longform recordings is that they can fuel realistic models of early language acquisition that use speech to represent children’s input and/or to establish production benchmarks. To enable the field to make the most of this unique empirical and conceptual contribution, we outline what this reverse engineering approach from long-form recordings entails, why it is useful, and how to evaluate success.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann