Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
SIAM Journal on Optimization (SIOPT)
We propose a new globally convergent stochastic second order method. Our starting point is the development of a new Sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form F (x) = 0 with F : R[p] → R[m]. We then show how to design several stochastic second order optimization methods by re-writing the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model (GLM), we derive completely new and scalable stochastic second order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Furthermore, using a variable splitting trick, we also show that the Stochastic Newton method (SNM) is a special case of SNR, and use this connection to establish the first global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a variant of the online stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to the classic monotone convergence theory.
Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, Artsiom Sanakoyeu
Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Manoj Chakkaravarthy, Udit Gupta, David Brooks, Carole-Jean Wu
Ilkan Esiyok, Pascal Berrang, Katriel Cohn-Gordon, Robert Künnemann