Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Journal of Economic Perspectives
Social networks can shape many aspects of social and economic activity: migration and trade, job-seeking, innovation, consumer preferences and sentiment, public health, social mobility, and more. In turn, social networks themselves are associated with geographic proximity, historical ties, political boundaries, and other factors. Traditionally, the unavailability of large-scale and representative data on social connectedness between individuals or geographic regions has posed a challenge for empirical research on social networks. More recently, a body of such research has begun to emerge using data on social connectedness from online social networking services such as Facebook, LinkedIn, and Twitter. To date, most of these research projects have been built on anonymized administrative microdata from Facebook, typically by working with coauthor teams that include Facebook employees. However, there is an inherent limit to the number of researchers that will be able to work with social network data through such collaborations.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel