Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
ACM Conference on Human Factors in Computing Systems (CHI)
This work explores the design of marking menus for gaze-based AR/VR menu selection by expert and novice users. It first identifies and explains the challenges inherent in ocular motor control and current eye tracking hardware, including overshooting, incorrect selections, and false activations. Through three empirical studies, we optimized and validated design parameters to mitigate these errors while reducing completion time, task load, and eye fatigue. Based on the findings from these studies, we derived a set of design guidelines to support gaze-based marking menus in AR/VR. To overcome the overshoot errors found with eye-based expert marking menu behavior, we developed StickyPie, a marking menu technique that enables scale-independent marking input by estimating saccade landing positions. An evaluation of StickyPie revealed that StickyPie was easier to learn than the traditional technique (i.e., RegularPie) and was 10% more efficient after 3 sessions.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel