A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Annual Meeting of the Association for Computational Linguistics (ACL)
Recent years have witnessed the burgeoning of pretrained language models (LMs) for text-based natural language (NL) understanding tasks. Such models are typically trained on free-form NL text, hence may not be suitable for tasks like semantic parsing over structured data, which require reasoning over both free-form NL questions and structured tabular data (e.g., database tables). In this paper we present TABERT, a pretrained LM that jointly learns representations for NL sentences and (semi-)structured tables. TABERT is trained on a large corpus of 26 million tables and their English contexts. In experiments, neural semantic parsers using TABERT as feature representation layers achieve new best results on the challenging weakly-supervised semantic parsing benchmark WIKITABLEQUESTIONS, while performing competitively on the text-toSQL dataset SPIDER.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré