A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
The Asian Conference on Machine Learning (ACML)
The convergence rates for convex and non-convex optimization methods depend on the choice of a host of constants, including step-sizes, Lyapunov function constants and momentum constants. In this work we propose the use of factorial powers as a flexible tool for defining constants that appear in convergence proofs. We list a number of remarkable properties that these sequences enjoy, and show how they can be applied to convergence proofs to simplify or improve the convergence rates of the momentum method, accelerated gradient and the stochastic variance reduced method (SVRG).
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré