Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
IEEE International Symposium on High-Performance Computer Architecture (HPCA)
The use of GPUs has proliferated for machine learning workflows and is now considered mainstream for many deep learning models. Meanwhile, when training state-of-the-art personal recommendation models, which consume the highest number of compute cycles at our large-scale datacenters, the use of GPUs came with various challenges due to having both compute-intensive and memory-intensive components. GPU performance and efficiency of these recommendation models are largely affected by model architecture configurations such as dense and sparse features, MLP dimensions. Furthermore, these models often contain large embedding tables that do not fit into limited GPU memory. The goal of this paper is to explain the intricacies of using GPUs for training recommendation models, factors affecting hardware efficiency at scale, and learnings from a new scale-up GPU server design, Zion. Index Terms—Recommendation models, GPUs, training efficiency, deep learning
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Patrick Lewis, Barlas Oğuz, Wenhan Xiong, Fabio Petroni, Wen-tau Yih, Sebastian Riedel