A Method for Animating Children’s Drawings of the Human Figure
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Automatic Speech Recognition and Understanding Workshop (ASRU)
For low resource languages, collecting sufficient training data to build acoustic and language models is time consuming and often expensive. But large amounts of text data, such as online newspapers, web forums or online encyclopedias, usually exist for languages that have a large population of native speakers. This text data can be easily collected from the web and then used to both expand the recognizer’s vocabulary and improve the language model. One challenge, however, is normalizing and filtering the web data for a specific task. In this paper, we investigate the use of online text resources to improve the performance of speech recognition specifically for the task of keyword spotting. For the five languages provided in the base period of the IARPA BABEL project, we automatically collected text data from the web using only LimitedLP resources. We then compared two methods for filtering the web data, one based on perplexity ranking and the other based on out-of-vocabulary (OOV) word detection. By integrating the web text into our systems, we observed significant improvements in keyword spotting accuracy for four out of the five languages. The best approach obtained an improvement in actual term weighted value (ATWV) of 0.0424 compared to a baseline system trained only on LimitedLP resources. On average, ATWV was improved by 0.0243 across five languages.
Harrison Jesse Smith, Qingyuan Zheng, Yifei Li, Somya Jain, Jessica K. Hodgins
Yunbo Zhang, Deepak Gopinath, Yuting Ye, Jessica Hodgins, Greg Turk, Jungdam Won
Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn, Christopher Ré