Popularity Prediction for Social Media over Arbitrary Time Horizons
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Neural Information Processing Systems (NIPS)
Multi-agent predictive modeling is an essential step for understanding physical, social and team-play systems. Recently, Interaction Networks (INs) were proposed for the task of modeling multi-agent physical systems. One of the drawbacks of INs is scaling with the number of interactions in the system (typically quadratic or higher order in the number of agents). In this paper we introduce VAIN, a novel attentional architecture for multi-agent predictive modeling that scales linearly with the number of agents. We show that VAIN is effective for multi-agent predictive modeling. Our method is evaluated on tasks from challenging multi-agent prediction domains: chess and soccer, and outperforms competing multi-agent approaches.
Daniel Haimovich, Dima Karamshuk, Thomas Leeper, Evgeniy Riabenko, Milan Vojnovic
Liqi Yan, Qifan Wang, Yiming Cu, Fuli Feng, Xiaojun Quan, Xiangyu Zhang, Dongfang Liu
Barlas Oğuz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, Wen-tau Yih